A : Advanced OpenMP Constructs, Tuning, and Tools Nﬂ%sc
reoeoroeoe] ]! at NERSC

BERKELEY LAB Ahana Roy Choudhury?, Yun (Helen) He?, and Alice Koniges? ALABAMA BT BIEMINGHAM
'Computer & Information Sciences Department, University of Alabama at Birmingham Knowledge that will change your world
’NERSC, Lawrence Berkeley National Laboratory, Berkeley, CA

Improving Performance of Sample Codes using Tools

@
NERSC’s next generation supercomputer systems, e.g., Cori Phase 2 with KNL (Intel Knights Landing) (Conhnued)
architecture, have a large number of cores per node, so, it is important to consider advanced OpenMP
concepts in order to achieve optimal performance on such systems. Threading Design using Intel Advisor
* False sharing occurs when threads on different processors attempt to modify variables that reside on
In this project, we have written and implemented code snippets and used them to test a variety of the same cache line.
tools for improving OpenMP performance and detailed their usage on various NERSC systems e |t causes performance degradation due to coherence issues and should be avoided.
including KNL. We have explored the detection of issues such as false sharing and data races using * Intel VTune Amplifier is a performance analysis tool that helps to analyze the algorithm and identify
tools and how they can be resolved. We have also explored advanced OpenMP concepts such as where and how applications can benefit from available hardware resources.
process and thread affinity and nested OpenMP.  To detect false sharing using VTune Amplifier, we wrote a code that causes false sharing, detected the
problem and then resolved it using padding. We also noted that some compiler optimization choices
Questions and Challenges remove false sharing.
, Before False Sharing Removal After false Sharing Removal
' ?
* Which part of the code can be safely parallelized: © Elapsed Time & 57108 B> ) Elapsed Time < 2.467s =
e How to detect and avoid data races? CPU Time ° 94.3725 CPU Time 51535
. H to detect and av0|d memor |eaks? -) Memory Bound : 48.9% | (>) Memory Bound : 2.49%
ow y - * . . . . Grouping: ‘ OpenMP Region / Function / Call Stack Grouping: ‘ OpenMP Region / Function / Call Stack
* How can tools be used to get suggestions on variable scope and OpenMP compiler directives? " ~
. = . ? en egion / Function a ac ime s v 0 - A:eerzge : A
e How to detect tOp Time consuming |00p5. OpenMP Region / Function / Call Stack CPUT Boun’g’ Lo. | St. L(C)t/cleg) e e U T M;;T,ﬂﬁ" Loa | st L;’t";g;
* How to detect and remove false sharing? (cycles)
. . . . [’[Serial-outside any region] 0.323s| 56.2% 14.. 16. 0 L N N (R R
* Ensuring desirable process and thread affinity - maingompsparallel 16@unknown 1525 | 947935 LY 14 32| of o 03185 [N 738% ol |
. S. . Memo [’main$0mp$paral|e|:16@unknown:15:25 4.8355- 06% N,.. 27. 10
* USIng Nested OpenMP F'_~A RTINS iurcle — o me Bound 1t int A[NUM_THREADS][16]__attribute_
:I @F 1_[[1] : :UII’U_HM 12 1Nt Nn=atoitlargviriir;
13 int 1; :4 1::: il: n=0;
14 1nt sum=0; : ——
15 #pragma omp parallel num_threads(NUM THREADS) This line causes 16 pragma 2y EEEEELET i ENrCEC LY L s 2R
16 { - .
. . . . 17 int thread = omp_get_thread_num(); L 1; :?:h::;z;]?o]: ngtget_thread_num();
Threading Design using Intel Advisor w  Althread] =0; N
;i 2;2:;:2msage:;\f;:§;;;le(sta : 20 #pragma omp for schedule(static)
* Intel Advisor helps to ensure that Fortran, C and C++ applications take full performance advantage 21 for (i=0; i<=n; i++) coo0s M 497% 21 for (1=0; i<en; it:)
J 22 chread] += 1%10; ) 238375 [ = 22ﬂ rea 1[0] += 1%
of today's processors. R e e 23 Pragmeompsrtomit—
_ read] : 24 sumt=Althrea ol;
« Threading Advisor is a threading design and prototyping tool that helps to analyze, design, tune, 2 sumshlthreadl; s | 3

and check threading design options without disrupting normal development.

sy s oun 6 Adisor Estimate and Actuel woll Gock Time Process and Thread Affinity

Identify Top Time
Consuming Loops Based on the . 140 o _ o
using Survey Report Sui;a}bilirt]v Féer;org N y « Thread affinity binds each process or thread to run on a specific subset of processors, to take
Modity the Code by e 120 .
Parallelizing the Loop [EREES © - advantage of memory |OCa|Ity.
S o . . * Improper process/thread affinity could slow down code performance significantly.
Insert Annotations for v o i E % % Estimated time
P llel Regi d T 2xA 9 i Actual Time . ° °
f— 0 ° Using the OMP_PROC_BIND environment variable
Check Dependencies 40 .
to Remove Data 2 4 8 16 32 64 ) OMP_PROC_BIND=spread OMP PROC BIND=close
Sharing Problems S ot O OMP NUM THREADS OMP NUM THREADS OMP NUM THREADS OMP NUM THREADS
Use Suitability Report 2 3 8 16 3 64 64 128 64 128
to Predict the Speed- # of threads 1
up of the Application | Comparison between Advisor estimated and measured Core #_) 0 1 2 - 63 0 1 2 - 63 0 1 15~ 63 0 1 .31~ 63

based on Annotations wall clock times. The % variation range is 3-15% and
increases with increasing numbers of threads.

Parallelizing Codes using Cray Reveal
 Revealis a tool developed by Cray that is part of the Cray Perftools software package.

* Helps to identify top time-consuming loops, dependencies and vectorization. Processor (Thread ID)  Processor (Thread ID) Processor (Thread ID)  Processor (Thread ID)
 Loop scope analysis provides variable scope and compiler directive suggestions for inserting
OpenMP.
.:..:,o_o_r;;emrmance i,|¢. ............................................... e o ar lt o N e Ste d O e n M P
v 1871830 cellsAlive@66 67 // compute new matrix : Scalar  Private p
1871830  Instance #1 b | 68 for (1 =1; 1 <Ml 1+) { alue  Scalar Private
b llpIr2 69 for (3 =1; 7 < Ml; J+) { N Scalar  Shared o
b 1871382 cellsAlive@69 70 // find out the value of the current cell life Scalar Shared ~ WARN: Assuming no overlap with other objects. FO rk a nd jOI n MOdEI When to use NeSted Open M P
b 10098 cellsAlive@49 71 value = life[i-1][j-1] + lifeli-1][j] + life[i-1][j+1] INFO: additional detail
b 10097 cellsAlive@51 72 + life[1][7-1] + life[1][j+1] tem Scalar Shared  WARN: Assuming no overlap with other objects. . . . .
b 00216 cellsAlive@39 73 + life[1+1][j-1] + life[i+1][j] + life[i+1][j+1] ; P INFO:additional:etaiI. p | TO aChleve more ﬁnE'gralnEd thread parallellsm:
b | cellsAlive 74 // check 1f the cell dies or life is born FAIL: Possible recurrence involving this object.
0010 catemegss B if (ale <2 1] volo > 3 - e —_.|F ] * When the top level OpenMP loop does not use all
b 00000 cellsAlive@45 76 templil(j] = 0 ; e e RECHEteD .
77 else 1f (value == 3) gEnaMe LastPrivate - [v‘ F : (: aval Ia ble th readS
78 temp(1](j] =1 ; _ . .
- Fratan| 0 k n ] * When multiple levels of OpenMP loops are not easily
80 templi] 1) = lifelil[j] ; 'nse"D'recﬂvi!_j_h_ovi oisitwl| close | -_— . 0 collabsed
| i } [\ OpenMP Directive Kk F 1 p
" Info- Line 68 i ' // Dlrectlve inserted by Cray Reveal. May be incomplete. R e 0 n ° For Certain com putal'iOn intensive kernels
@ Aloop was notvectorized because a recurrence was found between 'life" and temp” at line 80. #pragrr::ssoor::/z dpa;aruzl)for defauli(none) Variables —— r ] ]
@ Aloop was notvectorized because a recurrence was found between 'life" and 'femp" at line 80. private (ijvalt — K e For multi-threaded MKL (lntel Math Kernel Libra ry)
I Aloop was unrolled 2 times. | shared (N.life)
....... | = The loon is flat
: : : e Copy Directive XCIose | ‘ o n
fite2_driver ploaded. lie2_driverspat29382-237t a2 loaded. T h read Aff in |ty fo r N eSte d 0 pe n M P
Threading and Memory Error Detection using Intel Inspector OMP NUM THREADS=4,3
: : : : : : OMP_PROC_BIND=spread,close OMP_PROC_BIND=spread,spread
* Intel Inspector is a dynamic memory and threading error checking tool for users developing serial
: : : Level 1 0 16 32 48
and multithreaded applications. l l l l Level 2 threads Level 2 threads Llevell |0 16 | |32 | |48
. . - in same team
Example for Detecting Data Race Example for Detecting Memory Problems N el rrmi e N same team | 1 1
y bind to threads evenly spread Levelz |0 16 |[32 ||48
I¥¥| Locate Deadlocks and Data Races ¥ Locate Memory Problems on threads on
Pni?le':;get Analysis Type || . Collection Log | R d Pm:’:le':;get Analysis Type || B2 Collection Log | [Tt 64 80 96 112 on same core dﬁ: t a3 e T o
o o Souces luowe: lonecisee G ITerent cores
Data race xthi-race.c xthi-race.impi ‘' New b po New 128 144 160 176 Q 202 218 234 250
Data race xthi-race. ... xthi-race.impi Re New _ bp3 o Memory leak mulmy.c mulmv.impi 40000 R New
e xthi-race ... xthi-race.impi R New PP4a @  Memory leak mulmv.c  mulmvimpi 200000000 R New
Description Source Function Module T m
Allocation site mulmv.c:1€ main mulmv.impi 40000 ®
int n=atoi(argv[1]); mulmv.impi!main - mulmv.c:
ig in: i,jl;c araviih libc.so.g!_libc_star‘c_mairli6 CO n C I u s I O n S

4 1 m |}

'10f4 b | All| Code Locations: Data race i y=(double *)malloc(n*sizeof(dougg@; mulmv.impi!_start - start.S:11
17 A=(double ¥Jmalloc(n*sizeof (double));

Desqiption Sogrce : Fur?ction Movdule — 18 x=(double **)malloc(n*sizeof (double*));
\Q/’;t; (vztihg;ascceﬁicsiigr::anffinit;t(hg,racsej;lénepc;f(coremask), &corel|xthi-race.impi!main - xthi-race.c:54 Memory Used by Analysis Tool and Target Application In Order tO aChIeVe gOOd performance IN OpenMP COdES, |t IS ImpOrtant tO use advanced OpenMP
53 Cpuset—to—CStr(&coremaSk' Clbu{); Current memory usage (updated every second): S45 MB . . . . . . .
gt _coerr = v — concepts like process and thread affinity and nested OpenMP. It is equally crucial to avoid false sharing and
e e o8 e over-subscription. We have explored how tools can be used to facilitate the process of tuning OpenMP
(e e gy kO ooy (coremask), Geord)|xthi-race.impitmain - xthi-race.c:>4 M codes as well as worked on thread and process affinity and nested OpenMP. Future work involves using
54 global:coanter++; ~ 136 MB . .
S5 #pragma onp barrier i . now nested OpenMP to speed up full applications.
56 printf("Hello from level 1: rank= %d, thread level : o o '

References
1. https://computing.linl.gov/tutorials/openMP/ 7. http://www.nersc.gov/users/computational-systems/cori/application-porting-and-performance/improving-openmp-
2. http://www.eweek.com/c/a/Application-Development/Oracle-and-Java-7-The-Top-10-Developer-Features-626145 scaling/
3. Using OpenMP by Barbara Chapman, Gabriele Jost, Ruud van der Pas, The MIT Press, MIT, 2008. 8. https://software.intel.com/en-us/articles/avoiding-and-identifying-false-sharing-among-threads
4. https://software.intel.com/en-us/get-started-with-advisor-threading-linux 9. https://software.intel.com/en-us/articles/finding-your-memory-access-performance-bottlenecks
5. https://software.intel.com/en-us/intel-inspector-xe 10. https://www.nersc.gov/assets/Uploads/Nested-OpenMP-NUG-20151008.pdf
6. https://www.olcf.ornl.gov/wp-content/uploads/2013/02/Cray Reveal-HP1.pdf 11. http://www.nersc.gov/users/training/events/advanced-openmp-training-february-4-2016/

12. https://drive.google.com/a/lbl.gov/file/d/0BO9D5EnxRgcaZalRSWEh6bkhxNGs/view

POSTER TEMPLATE BY GENIGRAPHICS® 1.800.790.4001 WWW.GENIGRAPHICS.COM




